

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5853-5857

Imidazopiperidine amides as dipeptidyl peptidase IV inhibitors for the treatment of diabetes

Ping Chen,^{a,*} Charles G. Caldwell,^a Robert J. Mathvink,^a Barbara Leiting,^b Frank Marsilio,^b Reshma A. Patel,^b Joseph K. Wu,^b Huaibing He,^a Kathryn A. Lyons,^a Nancy A. Thornberry^b and Ann E. Weber^a

^aDepartment of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA ^bDepartment of Metabolic Disorders-Diabetes, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

Received 13 July 2007; revised 10 August 2007; accepted 13 August 2007 Available online 19 August 2007

Abstract—A series of substituted imidazopiperidine amides has been prepared and evaluated for inhibition of dipeptidyl peptidase IV (DPP-4). Substitution at the 1- and 3-positions produced increased selectivity for DPP-4 relative to DPP-8 and DPP-9. Compounds in this series had IC_{50} values as low as 5.8 nM for inhibition of DPP-4. Published by Elsevier Ltd.

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are important incretin hormones released from intestine in response to nutrient ingestion. They both stimulate insulin secretion in a glucose-dependent manner. In addition, GLP-1 also suppresses glucagon secretion, slows gastric emptying, and reduces food intake, while stimulating pancreatic β -cell growth. Continuous subcutaneous infusion of GLP-1 in diabetic patients for six weeks resulted in reduction of blood glucose and hemoglobin A_{1c} levels.

GLP-1 and GIP are rapidly inactivated in the circulation by the enzyme dipeptidyl peptidase IV (DPP-4), a serine peptidase which cleaves an N-terminal dipeptide from polypeptides having a proline or alanine residue at the P₁ site.¹ Inhibition of DPP-4 prevents the degradation of GLP-1 and GIP, resulting in enhancement of their physiological effects.^{1,3} Clinical studies have shown that small molecule DPP-4 inhibitors reduce both prandial and fasting glucose levels significantly, leading to lowering of hemoglobin A_{1c} levels in type 2 diabetics.³ Thus, DPP-4 inhibition has emerged as a new therapeutic approach for treatment of type 2 diabetes.

Keywords: Dipeptidyl peptidase IV inhibitors; Diabetes; Glucagon-like peptide-1 (GLP-1); Incretin hormones; Imidazopiperidine amides.

*Corresponding author. Tel.: +1 732 594 4263; fax: +1 732 594 5790; e-mail: ping_chen@merck.com

Among the structurally novel β-amino acid-based DPP-4 inhibitors reported from these laboratories, the triazolopyrazine sitagliptin phosphate (1), also called Januvia, is a potent, selective, orally active DPP-4 inhibitor recently approved for treatment of type 2 diabetes. In a related series of piperazine derivatives, represented by structures 2–4, introduction of a 2-methyl substituent improved DPP-4 potency by more than two fold, while the benzyl group of compound 4 gave a 27-fold increase

Figure 1. β-Amino acid DPP-4 inhibitors.

12
$$\xrightarrow{\text{d-f}}$$
 $\xrightarrow{\text{HN}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{CF}_3}$ $+$ $\xrightarrow{\text{HN}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{CF}_3}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{CF}_3}$ $\xrightarrow{\text{13}}$ $\text{R} = \text{CH}_3$ 14 $\text{R} = \text{C}_2\text{H}_5$ 15 $\text{R} = \text{i-Bu}$ 16 $\text{R} = \text{i-F-Bn}$ 20 $\text{R} = \text{i-F-Bn}$

Scheme 1. Reagents and conditions: (a) TFA, reflux ($R' = CF_3$); (b) R'COCl, Et₃N, CH₂Cl₂, then TsOH, xylene (R' = t-Bu) or AcOH (R' = c-Pr); (c) H₂ (1000 psi), PtO₂, EtOH, 40 °C; (d) (Boc)₂O, CH₂Cl₂; (e) R-I, NaH, THF; (f) HCl, CH₃OH.

in potency.⁵ The first imidazopiperidine analog we prepared was the unsubstituted derivative **5**, which showed modest potency as a DPP-4 inhibitor (Fig. 1). We initiated an investigation of the effect of substitution in this series of heterocyclic compounds. The work described here involves the synthesis and biological evaluation of imidazopiperidine-based β -amino acid derivatives.

Determinations of IC₅₀ values for inhibition of DPP-4 and quiescent prolyl peptidase (QPP/DPP-II) were carried out as described previously. Compounds were also tested against DPP-8 and DPP-9, two enzymes which have been associated with significant toxicity in animal studies.

An initial synthetic route to imidazopiperidine intermediates having substitution at the 1-, 2- or 3-position is depicted in Scheme 1. Chemistry began with 3,4-diami-

Scheme 2. Reagents: (a) PhOCOCl, R'MgX, THF; (b) *t*-BuOK, THF; (c) H₂, 10% Pd/C, EtOH; (d) HPLC resolution; (e) HCl, CH₃OH; (f) Cbz–Cl, CH₃MgBr, THF.

nopyridine (6) and 3-amino-4-(methylamino)pyridine (7).⁸ Treatment with trifluoroacetic acid as described by Threadgill yielded the 2-(trifluoromethyl)imidazopyridines 8 and 9.⁹ Hydrogenation then generated imidazopiperidine intermediates 12 and 13. Protection of the piperidine nitrogen, alkylation on the imidazole ring, and removal of the Boc protecting group produced 1-and 3-alkyl imidazopiperidines 13–16, and 17–20.

Synthesis of the 2-cyclopropyl and 2-tert-butyl substituted imidazopyridines 10 and 11 was accomplished by acylation of 7 followed by acid-catalyzed cyclization of the intermediate amides (Scheme 1). These derivatives, as well as the 2-trifluoromethyl analogs described above, were used in acylpyridinium reactions¹⁰ to produce the 4-substituted 4,5-dihydro intermediates 21–27 (Scheme 2). Treatment with potassium tert-butoxide converted the N-phenoxycarbonyl group of these intermediates into a Boc group prior to hydrogenation.¹¹ In most cases, enantiomers of the Boc-protected hydrogenation products were separated using a chiral HPLC column. Finally, removal of the N-Boc group using methanolic HCl gave imidazopiperidine intermediates 28–34. An early attempt to synthesize 28 using a one-pot hydrogenation and deprotection of the N-Cbz intermediate 35 resulted in formation of aromatization product 36. Imidazopyridine 36 was later converted into 4,4-dimethyl analog 37 following a reaction route similar to that used to prepare imidazopiperidine 28 from intermediate 9.

Introduction of a trifluoromethyl group at the 4-position was accomplished by a condensation reaction of histamine (38) with trifluoroacetaldehyde ethyl hemiacetal (Scheme 3).¹² The mono-protected intermediate 39 was generated by reaction with 2 equiv of di-*tert*-butyl dicarbonate, followed by treatment with ammonia to remove the more reactive imidazole Boc group. Methylation, HPLC separation, and deprotection gave the enantiomers of intermediate 42.

Synthesis of imidazopiperidines **47** and **48** via 3,4-diaminopiperidine intermediate **46** is outlined in Scheme 4. Epoxidation of 1,2,3,6-tetrahydropyridine derivative **43**¹³ followed by opening with sodium azide afforded

Scheme 3. Reagents and conditions: (a) $CF_3CH(OH)OC_2H_5$, NaOH, H_2O , reflux; (b) 2 equiv (Boc) $_2O$, CH_2Cl_2 , THF; (c) NH $_3$, CH_3OH ; (d) CH_3I , $KN(TMS)_2$, THF, -20 °C; (e) separate isomers; (f) HCl, CH_3OH .

Boc
$$N$$
 A_3 A_4 A_5 Boc N N_3 N_3

Scheme 4. Reagents and condition: (a) *m*-CPBA, CH₂Cl₂; (b) NaN₃, NH₄Cl, EtOH, H₂O; (c) MsCl, Et₃N, CH₂Cl₂; (d) NaN₃, DMF; (e) H₂, 10% Pd/C, EtOH; (f) PhC(=NH)OEt HCl or 4-FC₆H₄C(=NH)SMe HCl, EtOH, reflux; (g) (COCl)₂, DMSO, Et₃N, CH₂Cl₂.

Scheme 5. Reagents: (a) EDC, HOBt, Et₃N, DMF; (b) HCl, CH₃OH.

separable azido alcohols **44** and **45**. Conversion of **44** into the corresponding mesylate, ¹⁴ displacement by azide, and hydrogenation afforded diamine **46**. Cyclization with benzimidate (for R = Ph)¹⁵ or thiobenzimidate (for $R = 4-C_6H_4F$)¹⁶ produced an imidazoline which was oxidized to the imidazole using Swern conditions. ¹⁷

Finally, in most cases EDC-mediated coupling of Bocprotected β -amino acids **49** (X = H or F) with imidazopiperidine intermediates **50** was successful, providing DPP-4 inhibitors **51** after removal of the Boc group. For the less reactive imidazopiperidines leading to gem-dimethyl derivative **66** and the 4-trifluoromethyl derivatives **67a**–**b**, it was preferable to activate acid **49** as a mixed anhydride with pivaloyl chloride prior to condensation with **50** in the presence of 4-(dimethylamino)pyridine and N-methylmorpholine in dichloromethane (Scheme 5).

Table 1 lists data for an initial series of DPP-4 inhibitors having substitution on the imidazole ring. While all of these compounds have submicromolar IC₅₀ values as DPP-4 inhibitors, relatively little variation in potency is observed. It is noteworthy that compounds **52** and **61**, the two examples lacking N-substitution on the imidazole ring, show the lowest selectivity for DPP-4 over DPP-8 and DPP-9. *i*-Butyl and 4-fluorobenzyl groups at the 3-position produce high levels of selectivity (e.g., **58** and **60**), but these analogs are slightly less potent as DPP-4 inhibitors. The 1-methyl derivative **53**, with its balance of activity and selectivity as a DPP-4 inhibitor, was selected for further modification to examine the effects of substitution at the 4-position.

Table 2 displays enzyme assay data for 1-methylimidazopiperidine derivatives having substitution at 2- and 4positions. For diastereomeric isomers 63a-b, 65a-b, and 67a-b to 72a-b, one stereoisomer is 2- to 130-fold more potent than the other as a DPP IV inhibitor. Xray crystal structure determination of these active diastereomers was not conducted in this series. However, a related analog having 2-substituted triazolopiperazine subunit on the right-hand side was studied and the absolute stereochemistry of 2-methyl triazolopiperazine derivative was determined by X-ray crystal structure, ¹⁸ in which R-isomer (IC₅₀ = 25 nM) is 120-fold more potent than S-isomer ($IC_{50} = 274 \text{ nM}$). We assume that the active stereoisomer of 63b, 65b, 67b-72b have (R) configuration while 63a, 65a, 67a-72a have (S) stereochemistry. The 2,4,5-trifluorophenyl analog 64 is the R-diastereomer, prepared from the same enantiomer of

Table 1. Substitution on the imidazole ring

Compound	R^1	\mathbb{R}^2	R^3	DPP-4 IC ₅₀ (μM)	QPP IC ₅₀ (µM)	DPP-8 IC ₅₀ (μM)	DPP-9 IC ₅₀ (μM)
52	Н	CF ₃	_	0.14	>100	9.4	51
53	CH_3	CF ₃	_	0.15	92	68	>100
54	_	CF_3	CH_3	0.13	80	50	50
55	C_2H_5	CF_3	_	0.18	>100	58	>100
56	_	CF_3	C_2H_5	0.23	76	77	63
57	<i>i</i> -Bu	CF ₃	_	0.22	49	54	>100
58	_	CF_3	<i>i</i> -Bu	0.26	85	>100	>100
59	4-F-Bn	CF ₃	_	0.25	64	23	>100
60	_	CF ₃	4-F-Bn	0.25	56	>100	>100
61	Н	Ph	_	0.13	33	6.6	9.4
62	CH_3	$4-C_6H_4F$	_	0.28	58	26	73

Table 2. Substitution at the 4-position

Compound	X	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	DPP-4 IC_{50} (μM)	QPP IC_{50} (μM)	DPP-8 IC ₅₀ (μM)	DPP-9 IC ₅₀ (μM)
63a	Н	CF ₃	CH ₃	Н	0.19	>100	64	>100
63b	Н	CF_3	CH_3	H	0.065	>100	77	>100
64	F	CF_3	CH_3	H	0.045	39	58	>100
65a	F	CF_3	C_2H_5	H	0.61	93	>100	>100
65b	F	CF_3	C_2H_5	H	0.060	45	55	89
66	F	CF_3	CH_3	CH_3	0.57	28	4.0	15
67a	F	Н	CF_3	Н	0.38	76	>100	>100
67b	F	H	CF ₃	Н	0.050	38	39	>100
68a	F	CF_3	c-Pr	H	0.34	>100	>100	>100
68b	F	CF_3	c-Pr	Н	0.11	37	85	>100
69a	F	c-Pr	CH_3	H	0.49	90	65	ND
69b	F	c-Pr	CH_3	Н	0.25	30	33	ND
70a	F	t-Bu	CH_3	Н	0.63	37	80	ND
70b	F	t-Bu	CH_3	H	0.37	19	21	ND
71a	F	CF_3	Bn	Н	0.57	46	100	>100
71b	F	CF_3	Bn	Н	0.0084	20	70	>100
72a	F	CF_3	4-F-Bn	Н	0.78	39	100	>100
72b	F	CF ₃	4-F-Bn	Н	0.0058	15	46	>100

Table 3. Pharmacokinetic properties in rats

	64	67b	71b
Dosage			
iv (mg/kg)	1	1	1
po (mg/kg)	2	2	2
Cl _p (ml/min/kg)	81	93	64
Vd _{ss} (L/kg)	8.0	8.3	6.5
$t_{1/2}$ (h)	1.2	1.4	1.5
C_{max} (po dosage, μ M)	0.098	0.050	0.072
Oral bioavailability (%)	40	16	16

piperidine **28** used in the synthesis of the 2,5-difluor-ophenyl compound **63b**. Relative to **63b**, the 2,4,5-trifluorophenyl analog **64** shows a small increase in potency as a DPP-4 inhibitor, but is less selective versus QPP. Introduction of an ethyl or cyclopropyl group at the 4-position (samples **65b** and **68b**) does not result in an improvement relative to the 4-methyl derivative **64** (DPP-4 IC $_{50}$ = 45 nM). A benzyl or 4-fluorobenzyl substituent at the 4-position (samples **71b** and **72b**), however, produces compounds having DPP-4 IC $_{50}$ values below 10 nM. The 4,4-dimethyl compound **66** shows increased potency against DPP-8 and DPP-9 while losing activity against DPP-4. The 4-trifluoromethyl analog **67b** is a DPP-4 inhibitor with an IC $_{50}$ value of 50 nM.

Compounds **64**, **67b**, and **71b**, having methyl, trifluoromethyl, and benzyl groups at the 4-position, were selected for evaluation in rat pharmacokinetic studies (see Table 3). While the 4-methyl compound **64** showed moderate oral bioavailability, the clearance was high and half-life was modest. The trifluoromethyl analog

67b showed a decrease in oral bioavailability and no improvement in other parameters. The more potent benzyl derivative 71b had similar pharmacokinetic properties.

In conclusion, a series of substituted imidazopiperidine amides has been prepared and evaluated as DPP-4 inhibitors. Substitution at the 1- and 3-positions produced increased selectivity for DPP-4 relative to DPP-8 and DPP 9, although improved potency against DPP 4 was not observed. Introduction of a substituent at the 4-position of the imidazopiperidine unit significantly improved DPP-4 inhibition, resulting in compounds with IC_{50} values as low as 5.8 nM.

Acknowledgments

The authors thank Dr. Joseph Laquidara, Mr. Glenn Reynolds, Mr. Joseph Simeone, and Mr. Frederick Wong for large-scale preparation of several intermediates used in this work.

References and notes

- (a) Holst, J. J. Diabetogoia 2006, 49, 253; (b) Drucker, D. J. Expert Opin. Investig. Drugs 2003, 12, 87; (c) Vahl, T. P.; D'Alessio, D. A. Expert Opin. Investig. Drugs 2004, 13, 177.
- Zander, M.; Madsbad, S.; Madsen, J. L.; Holst, J. J. Lancet 2002, 359, 824.
- (a) Holst, J. J.; Deacon, C. F. Curr. Opin. Pharmacol. 2004, 4, 589; (b) Weber, A. E. J. Med. Chem. 2004, 47, 4135; (c) Deacon, C. F.; Ahren, B.; Holst, J. J. Expert

- Opin. Invest. Drugs 2004, 13, 1091; (d) Mentlein, R. Expert Opin. Investig. Drugs 2005, 14, 57.
- (a) Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S. B.; Sinha Roy, R.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2005, 15, 141; (b) Thornberry, N. A.; Weber, A. E. Curr. Top. Med. Chem. 2007, 7, 557; (c) Gallwitz, B. Drugs Today 2007, 43, 13
- Brockunier, L. L.; He, J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* 2004, 14, 4763.
- Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.; Patel, R. A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.; Thornberry, N. A. J. Biochem. 2003, 371, 525.
- Lankas, G. R.; Leiting, B.; Sinha Roy, R.; Eiermann, G. J.; Beconi, M. G.; Biftu, T.; Chan, C.-C.; Edmondson, S.; Feeney, W. P.; He, H.; Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H. O.; Patel, R. A.; Petrov, A. N.; Pryor, K. A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.; Zhu, L.; Weber, A. E.; Thornberry, N. A. Diabetes 2005, 54, 2988.

- 8. 3-Amino-4-(aminomethyl)pyridine was prepared from 4-ethoxy-3-nitropyridine by analogy to the literature preparation of 3,4-diaminopyridine: Campbell, J. B.; Greene, J. M.; Laragnino, E. R.; Gardner, D. N.; Pike, A. J.; Snoddy, J.; Taylor, E. C. J. Heterocycl. Chem. 1986, 23, 669.
- Jones, B. G.; Branch, S. K.; Thompson, A. S.; Threadgill, M. D. J. Chem. Soc., Perkin Trans. 1 1996, 2685.
- Khanna, I. K.; Weier, R. M. Tetrahedron Lett. 1991, 34, 1885
- 11. Sundberg, R. J.; Bloom, J. D. J. Org. Chem. 1981, 46, 4836.
- 12. Habermehl, G. G.; Ecsy, W. Heterocycles 1976, 5, 127.
- Zhao, S.; Ghosh, A.; D'Andrea, S. V.; Freaman, J. P.; VonVoigtlander, P. F.; Carter, D. B.; Smith, M. W.; Blinn, J. R.; Szmuszkovicz, J. Heterocycles 1994, 39, 163.
- Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195.
- 15. Dauwe, C.; Buddrus, J. Synthesis 1995, 171.
- 16. Matsuda, K.; Yanagisawa, I.; Isomura, Y.; Mase, T.; Shibanuma, T. Synth. Commun. 1997, 27, 2393.
- Zimmerman, S. C.; Cramer, K. D.; Galan, A. A. J. Org. Chem. 1989, 54, 1256.
- Kowalchick, J. E.; Leiting, B.; Pryor, K. D.; Marsilio, F.; Wu, J. K.; He, H.; Lyons, K. A.; Eiermann, G. J.; Petrov, A.; Scapin, G.; Petel, R. A.; Thornberry, N. A.; Weber, A. E.; Kim, D. *Bioorg. Med. Chem. Lett.*, in press. doi:10.1016/j.bmcl.2007.07.100.